MODELING THE INFORMATION AND ANALYTICAL ENVIRONMENT FOR MANAGING ENTERPRISE BUSINESS PROCESSES

Keywords: business process management, information-analytical environment, enterprise modeling, BPMN, UML, decision support systems, data integration, digital transformation, process optimization, adaptive systems

Abstract

This article presents a conceptual model of an information-analytical environment aimed at enhancing the management of business processes within an enterprise. The research examines current approaches to business process management and information support, identifying their limitations in terms of integration, adaptability, and analytical capabilities. Based on this analysis, key requirements for an effective environment are defined, including data consolidation, analytical functionality, user interaction, and system security. The proposed methodology incorporates modern modeling tools such as BPMN, UML, and Data Flow diagrams to ensure structural clarity and scalability. A conditional case study illustrates the implementation of the model in a production-oriented enterprise, emphasizing improvements in process transparency, decision-making quality, and operational responsiveness. The article outlines the benefits of the approach compared to traditional systems and highlights directions for future development, including the use of intelligent technologies and adaptive system components.

References

Gounaris A. (2016) Towards automated performance optimization of BPMN business processes. In East European conference on advances in databases and information systems. Cham: Springer International Publishing, pp. 19–28.

Stefanovic N., Stefanovic D. (2009) Supply chain business intelligence: technologies, issues and trends. In Artificial Intelligence An International Perspective: An International Perspective. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 217–245.

Boukhers Z., Lange C., Beyan O. (2023) Enhancing data space semantic interoperability through machine learning: a visionary perspective. Proceedings of the ACM Web Conference, pp. 1462–1467.

Gurcan F., Ayaz A., Menekse Dalveren G. G., Derawi M. (2023) Business Intelligence Strategies, Best Practices, and Latest Trends: Analysis of Scientometric Data from 2003 to 2023 Using Machine Learning. Sustainability, no. 15(13). DOI: https://doi.org/10.3390/su15139854

Krutikov O., Derzhypilskyi Yu. (2025) Modeliuvannia biznes-protsesiv dlia pidvyshchennia efektyvnosti diialnosti pidpryiemstva [Business process modeling to improve enterprise performance]. Doslidzhennia ta innovatsii - Research and innovation, vol. 1(2(5)), pp. 92–98. (in Ukrainian)

Satyr L., Zadorozhna R., Novikova V., Vasylenko O. (2022) Modeliuvannia i optymizatsiia biznes-protsesiv ta vizualizatsiia eksabaitovykh danykh [Business process modeling and optimization and exabyte data visualization]. In I. L. Tatomyr, Yu. O. Shulzhyk (Eds.). Eksabaitova ekonomika: pidruchnyk [Exabyte economy: textbook]. Truskavets: POSVIT, pp. 50–60. (in Ukrainian)

Mangler J., Rinderle-Ma S. (2022) Cloud process execution engine: architecture and interfaces. Cornell university. arXiv:2208.12214v2. DOI: https://doi.org/10.48550/arXiv.2208.12214

Shkrabak I. V., Latysheva O. V., Shevchenko N. Yu. (2022) Upravlinnia materialnymy resursamy v biznes-protsesakh hirnycho-metalurhiinykh kompaniy na zasadakh Perfomance Management [Management of material resources in business processes of mining and metallurgical companies based on Performance Management]. Ekonomichnyi visnyk Donbasu - Economic Bulletin of Donbas, no. 3(69), pp. 66–73. (in Ukrainian)

Gounaris A. Towards automated performance optimization of BPMN business processes. In East European conference on advances in databases and information systems. Cham: Springer International Publishing. 2016. pp. 19-28.

Stefanovic N., Stefanovic D. Supply chain business intelligence: technologies, issues and trends. In Artificial Intelligence An International Perspective: An International Perspective. Berlin, Heidelberg: Springer Berlin Heidelberg. 2009. pp. 217-245.

Boukhers Z., Lange C., Beyan O. Enhancing data space semantic interoperability through machine learning: a visionary perspective. Proceedings of the ACM Web Conference 2023. pp. 1462-1467.

Gurcan F., Ayaz A., Menekse Dalveren G. G., Derawi M. Business Intelligence Strategies, Best Practices, and Latest Trends: Analysis of Scientometric Data from 2003 to 2023 Using Machine Learning. Sustainability. 2023. №15(13). DOI: https://doi.org/10.3390/su15139854

Крутіков О., Держипільський Ю. Моделювання бізнес-процесів для підвищення ефективності діяльності підприємства. Дослідження та інновації, 2025. Том 1(2 (5)). С. 92-98.

Сатир Л., Задорожна Р., Новікова В., Василенко О. Моделювання й оптимізація бізнес-процесів та візуалізація ексабайтових даних. Ексабайтова економіка: підручник. За науковою ред. к.е.н., доц. Татомир І.Л., к.техн.н., доц. Шульжика Ю.О. Трускавець: ПОСВІТ, 2022. С. 50-60.

Mangler J., Rinderle-Ma S. Cloud process execution engine: architecture and interfaces. Cornell university. arXiv:2208.12214v2. 2022. DOI: https://doi.org/10.48550/arXiv.2208.12214.

Шкрабак І. В., Латишева О. В., Шевченко Н. Ю. Управління матеріальними ресурсами в бізнес-процесах гірничо-металургійних компаній на засадах Perfomance Management. Економічний вісник Донбасу. 2022. №3 (69). С.66-73.

Article views: 14
PDF Downloads: 6
Published
2025-09-04
How to Cite
Kolibabchuk, O. (2025). MODELING THE INFORMATION AND ANALYTICAL ENVIRONMENT FOR MANAGING ENTERPRISE BUSINESS PROCESSES. Sustainable Development of Economy, (4 (55), 477-482. https://doi.org/10.32782/2308-1988/2025-55-64